If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+40x-20=0
a = -4; b = 40; c = -20;
Δ = b2-4ac
Δ = 402-4·(-4)·(-20)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16\sqrt{5}}{2*-4}=\frac{-40-16\sqrt{5}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16\sqrt{5}}{2*-4}=\frac{-40+16\sqrt{5}}{-8} $
| 10a-6=249 | | .7.8=3.5+a* | | 8t³-t+9=0 | | 5x-1/3=x+1 | | 0.9x-0.5(5-x)=5.2 | | 4x−6/7=−7x+37 | | -2(3w-4)=2(w+24) | | 9x-(6x-3)=30 | | 6(u+8)=66 | | 22+4h=74 | | 3(2x+6)=2(x-1) | | 3x+8/7=−3x+12/3 | | s+33/9=8 | | x=(-11)=13 | | -3(2x-6)+5(3x-5)=11 | | 2=n/3=2 | | 2=n/3− 2 | | -32x-6)+5(3x-5)=11 | | 4(4x+6)-3(3x+5)=23 | | (3x+90)/(2x+18)=2.25 | | 4r-5=180 | | 4(4x+5)+3(2x+6)=104 | | 1/6r+2=4.9r+8/3 | | 6(4x-8)-3x+6=42 | | 15x+40=-8x-9 | | 2t+4(3t+6)=0 | | -3r-9/2=-9 | | 3(7=y) | | 2(5x+8)=4x+1 | | 5x÷7x=15 | | 20/x=12/24 | | -7(1/2-5x)=273/2 |